Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts.
نویسندگان
چکیده
Efficient delivery of therapeutic nanoparticles (TNPs) to tumors is critical in improving efficacy, yet strategies that universally maximize tumoral targeting by TNP modification have been difficult to achieve in the clinic. Instead of focusing on TNP optimization, we show that the tumor microenvironment itself can be therapeutically primed to facilitate accumulation of multiple clinically relevant TNPs. Building on the recent finding that tumor-associated macrophages (TAM) can serve as nanoparticle drug depots, we demonstrate that local tumor irradiation substantially increases TAM relative to tumor cells and, thus, TNP delivery. High-resolution intravital imaging reveals that after radiation, TAM primarily accumulate adjacent to microvasculature, elicit dynamic bursts of extravasation, and subsequently enhance drug uptake in neighboring tumor cells. TAM depletion eliminates otherwise beneficial radiation effects on TNP accumulation and efficacy, and controls with unencapsulated drug show that radiation effects are more pronounced with TNPs. Priming with combined radiation and cyclophosphamide enhances vascular bursting and tumoral TNP concentration, in some cases leading to a sixfold increase of TNP accumulation in the tumor, reaching 6% of the injected dose per gram of tissue. Radiation therapy alters tumors for enhanced TNP delivery in a TAM-dependent fashion, and these observations have implications for the design of next-generation tumor-targeted nanomaterials and clinical trials for adjuvant strategies.
منابع مشابه
Nanoparticle Mediated Tumor Vascular Disruption: A Novel Strategy in Radiation Therapy.
More than 50% of all cancer patients receive radiation therapy. The clinical delivery of curative radiation dose is strictly restricted by the proximal healthy tissues. We propose a dual-targeting strategy using vessel-targeted-radiosensitizing gold nanoparticles and conformal-image guided radiation therapy to specifically amplify damage in the tumor neoendothelium. The resulting tumor vascular...
متن کاملDevelopment and evaluation of macrophage targeted multidrug therapy against visceral leishmaniasis
In this study, we fabricated PCL-nanoparticles by encapsulating dual drugs as amphotericin B and doxorubicin via double-emulsion solvent evaporation method also incorporated with ligand-lectin for targeting the infested macrophage cells and prove importance against VL. Different independent processing parameters were assessed systematically to enhance the incorporation of the dual agents with d...
متن کاملEvaluation of a Novel Thermobrachytherapy Seed for Concurrent Administration of Brachytherapy and Magnetically Mediated Hyperthermia in Treatment of Solid Tumors
Concurrent hyperthermia and radiation therapy in treatment of cancer show a strong evidence of a synergistic enhancement. We designed a new self-regulating Thermo-Brachytherapy seed, which serves as a source of both radiation and heat for concurrent administration of brachytherapy and hyperthermia. The Thermo-Brachytherapy seed has a core of ferromagnetic material which produces heat when subje...
متن کاملUltrasound increases nanoparticle delivery by reducing intratumoral pressure and increasing transport in epithelial and epithelial-mesenchymal transition tumors.
Acquisition of the epithelial-mesenchymal transition (EMT) tumor phenotype is associated with impaired chemotherapeutic delivery and a poor prognosis. In this study, we investigated the application of therapeutic ultrasound methods available in the clinic to increase nanotherapeutic particle accumulation in epithelial and EMT tumors by labeling particles with a positron emission tomography trac...
متن کاملDual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy
Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and computed tomography (CT) imaging. AuNPs absorb x-rays and subsequently release low-energy, short-range photoelectrons during external beam radiation therapy (RT), increasing the local radiation dose. When AuNPs are near tumor vasculature, the additional radiation dose can lead to increased vascular permeabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science translational medicine
دوره 9 392 شماره
صفحات -
تاریخ انتشار 2017